13-12-2020، 21:48
سیستمهای کنترل شلیک در ابتدا برای کشتیها ایجاد شدند.
تاریخچهٔ اولیهٔ کنترل شلیک دریایی بیشتر در ارتباط با درگیری با اهداف در محدوده یا فاصلهٔ دید (قابل رویت) بود (که تحت عنوان شلیک مستقیم نیز شناخته میشود). در حقیقت، اکثر درگیریهای دریایی قبل از سال ۱۸۰۰ در فاصلهٔ ۲۰ تا ۵۰ یارد (۲۰ تا ۵۰ متر) بود [۱]. حتی در طول جنگ داخلی آمریکا، درگیری مشهور بین USS Monitor و CS Virginia اغلب در فاصلهٔ کمتر از ۱۰۰ یارد (۹۰ متر) بود.[۱]
پیشرفتهای فنی سریع در اواخر قرن ۱۹ باعث شد تا این محدوده [درگیری] تا حدی افزایش یابد که شلیک توپخانه امکانپذیر باشد. تسلیحات با گلولهٔ توپ انفجاری بسیار بزرگ با وزن نسبتاً کم (در مقایسه با توپهای تمام فلزی) به قدری محدودهٔ درگیری را افزایش دادند که مشکل اساسی هدفگیری آنها در حین حرکت کشتی روی موجهای متحرک بود. این مشکل با معرفی ژیروسکوپ (gyroscope) حل شد که حرکتها را تصحیح کرد و دقتهایی کمتر از درجه را فراهم آورد. هماکنون میتوان توپها را با هر اندازهای ساخت که بسرعت اندازهٔ ۱۰ اینچ کالیبر با ورود به قرن ۲۰ میسر شد. این تسلیحات دارای چنان محدودهٔ درگیری زیادی بودند که تنها مشکل آنها دیدن هدف بود که منجر به استفاده از دکلها (masts) در داخل کشتیها شد.
پیشرفت فنی دیگر پیدایش توربین بخار بود که عملکرد کشتیها را بشدت افزایش داد. کشتیهای پروانهای ابتدایی شاید قابلیت ۱۶ گره (knot) را داشتند، اما اولین کشتیهای توربینی بزرگ قابلیتی بیش از ۲۰ گره را داشتند. وجود این کشتیها همراه با محدودهٔ زیاد شلیک تسلیحات باعث شد تا کشتیها مسافت خیلی زیادی (طول چند کشتی) را از زمان شلیک گلوله توپ تا فرود آمدن آن بپیمایند. دیگر نیازی به سنجش هدف [با چشم] با هر دقت احتمالی نبود. همچنین، در درگیریهای دریایی، لازم است تا شلیک چند توپ همزمان کنترل شود.
کنترل شلیک تسلیحات دریایی معمولاً شامل سه مرحله پیچیدگی است. کنترل محلی ناشی از قرارگیری تسلیحات اصلی که هدف گروههای تسلیحاتی جدا است. هدفِ مورد نظر کنترل جهتیاب تمامی توپها روی کشتی در یک هدف منفرد است. شلیک هماهنگ توپخانه از گروهی از کشتیها روی یک هدف نقطه مشترک عملیات گروهی کشتیهای جنگی بودند. اصلاح سرعت سطحی باد، حرکت و زاویه کشتی شلیککننده، دمای انبار مهمات و باروت، رانش پرتابه-ها، قطر خود توپ که برای افزایش فاصله تیراندازیها تنظیم شدهاست، و نرخ تغییر محدوده یا فاصله با اصلاح بیشتر روی روش شلیک بر مبنای مشاهدهٔ شلیکهای قبلی انجام شد.
جهتهای بدست آمده که تحت عنوان روش شلیک شناخته میشوند ممکن است برای هدفگیری در اختیار برجکها قرار گیرند. اگر شلیکها به هدف برخورد نکنند مشاهدهگر باید روی فاصله و جهت شلیکهای از دست رفته کار کند و میتوان این اطلاعات را همراه با هر تغییر دیگری روی اطلاعات در اختیار کامپیوتر قرار داد تا شلیک دیگری انجام شود.
در ابتدا، هدف این بود که توپخانهها از روش شلیک نقطهزنی استفاده کنند. این کار شامل شلیک تسلیحات به هدف، مشاهدهٔ نقطهٔ اثر (محل فرود)، و اصلاح هدف بر مبنای محل مشاهده شدهٔ فرود گلوله توپ بود که این کار با بزرگتر شدن محدودهٔ شلیک بسیار دشوارتر شد.[۲]
بین جنگ داخلی آمریکا و ۱۹۰۵، چند پیشرفت کوچک همانند دستگاههای نشانهروی تلسکوپی و فاصلهیابهای نوری در کنترل شلیک ایجاد شدند. همچنین، پیشرفتهای رویهای همانند استفاده از بوردهای نقشهبرداری برای پیشبینی دستی محل کشتی در حین درگیری وجود داشت[۳]
سپس، از محاسبهگرهای مکانیکی بسیار پیچیده برای هدفگیری مناسب پرتابه استفاده شد که این کار معمولاً با نقطهیابهای مختلف و اندازهگیری فاصلههای ارسالی به ایستگاه نقطهیاب مرکزی در داخل کشتی انجام شد. تیمهای جهتیابِ شلیک مواردی همانند مکان، سرعت، جهت کشتی و هدف آن، همچنین تنظیمات متعددی برای اثر کوریولس (Coriolis)، اثرات آب و هوایی روی هوا و سایر تنظیمات را در نظر گرفتند. تقریباً در سال ۱۹۰۵، دستگاه کمکی کنترل شلیک مکانیکی همانند میز درییر (Dreyer Table), Dumaresq (که بخشی از میز درییر هم بود) و ساعت آرگو (Argo Clock) مطرح شدند. اما این دستگاهها سالها زمان برد تا کاربرد گستردهای بیابند.[۴][۵]]. این دستگاهها اشکال ابتدایی فاصلهنگهدارها (rangekeeper) بودند.
آرتور پولن و فردریک چارلز درییر به صورت جداگانه اولین سیستمهایی از این نوع را ایجاد کردند. پولن بعد از مشاهدهٔ دقت پایین توپخانهٔ دریایی در آموزش نظامی نزدیک مالت در سال ۱۹۰۰ شروع به کار بر روی این موضوع کرد[۶]لورد کلوین که به عنوان دانشمند برجستهٔ بریتانیایی شناخته میشد اولین بار استفاده از کامپیوتر آنالوگ را برای حل معادلاتی پیشنهاد داد که از حرکت نسبی کشتیهای درگیر در نبرد و تأخیر زمانی در حرکت گلولهٔ توپخانه استفاده میکرد تا منحنی مسیر لازم و بدین ترتیب جهت و ارتفاع توپها را محاسبه کند.
هدف پولن ایجاد کامپیوتر مکانیکی مرکب و طرح خودکار محدودهها و سرعتها برای استفاده در کنترل مرکزی شلیک بود. برای دسترسی به داده-های دقیق موقعیت و حرکت نسبی هدف، پولن واحد نقشهکشی (یا پلاتری) را برای اکتساب این دادهها ایجاد کرد. برای این کار او ژیروسکوپی را برای انحراف کشتی جنگی اضافه کرد. همانند پلاتر، ژیروسکوپ اولیه به توسعهٔ اساسی برای فراهم کردن دستورالعمل پیوسته و قابل اعتماد نیاز داشت.[۷]]. هرچند نمونههای آزمایشی در سال ۱۹۰۵ و ۱۹۰۶ غیرموفق بودند، اما امیدبخش به نظر میرسیدند. پولن در این کار توسط دریاسالار چکیی فیشر، دریاسالار آرتور نیوت ویلسون و مدیر مهمات و اژدر دریایی (DNO) جان جلیکو ترغیب شد. پولن کار خود را با چند تست انجام شده روی کشتی جنگی متعلق به نیروی دریایی سلطنتی ادامه داد.
در عین حال، گروهی به رهبری درییر سیستم مشابهی را طراحی کردند. هر چند هر دو سیستم برای کشتیهای جدید و موجود نیروی دریایی سلطنتی سفارش داده شدند، نهایتاً سیستم درییر در شکل نهایی Mark IV* خود مقبولیت بیشتری پیدا کرد. اضافه شدن کنترل جهتیاب باعث شد تا سیستم کنترل شلیک کامل و واقعی برای کشتیهای جنگ جهانی اول میسر شود و اکثر کشتیهای نیروی دریایی سلطنتی تا اواسط ۱۹۱۶ به آنها مجهز شدند. جهتیاب در بالای کشتی قرار گرفت جاییکه اپراتورها دید وسیعی نسبت به هر شخص نشانهگیر در برجکها داشتند. این دستگاه همچنین قادر بود شلیک از برجکها را طوری هماهنگ کند که شلیک مرکب آنها به صورت هماهنگ انجام شود. این کار هدفگیری را بهتر کرد. فاصلهیابهای نوری بزرگتر تخمین محل دشمن را در زمان شلیک بهبود دادند. نهایتاً، بجای این سیستم از میز کنترل آتش ادمایرالتی (Admiralty Fire Control Table) برای کشتیهای ساخته شده بعد از ۱۹۲۷ استفاده شد.[۸]
میز کنترل شلیک ادمیاریلتی در ایستگاه انتقال HMS Belfast
فاصلهنگهدارها در خدمات بلند مدت خود اغلب به صورت فناوری پیشرفته به-روزرسانی شدند و در جنگ جهانی دوم آنها بخش بسیار مهم سیستم کنترل شلیک یکپارچه شدند. یکپارچهسازی رادار در سیستم کنترل شلیک در ابتدای جنگ جهانی دوم این امکان را برای کشتیها فراهم کرد تا عملیات مؤثر شلیک در فاصلهٔ زیاد و در آب و هوای بد در شب میسر شود[۹] برای سیستمهای کنترل شلیک در نیروی دریایی ایالات متحده، به لینک سیستمهای کنترل شلیک توپ کشتی (ship gun fire-control systems.) مراجعه کنید.
استفاده از شلیک کنترل شده با جهتیاب همراه با کامپیوتر کنترل شلیک باعث شد تا کنترل نشانهگیر از روی برجکهای مجزا به محل مرکزی جابجا شود؛ هرچند که پایههای مجزای اسلحهها و برجکهای چند توپخانهای می-تواند استفاده از گزینهٔ کنترل محلی را درحین آسیب ناشی از نبرد روی انتقال اطلاعات جهتیاب حفظ کند (اینها ممکن است نسخههای سادهتر تحت عنوان میزهای برجک (turret tables) در نیروی دریایی سلطنتی باشد). در نتیجه تسلیحات قابلیت شلیک در رگبارهای برنامهریزی شده را داشتند که هر توپ مسیر کمی متفاوت داشت. پراکندگی شلیک ناشی از اختلاف در هر یک از تسلیحات مجزا، گلولههای مجزا، دنبالهٔ آتش باروت، و اعوجاج گذرای ساختار کشتی بدون تردید در محدوده درگیریهای دریایی معمول بزرگ بود. جهتیابها در بالای سازههای بلند دید بهتری از موقعیت دشمن در مقایسه با دید جهتیابهای قرار گرفته روی برجک داشتند و خدمهای که روی آنها کار میکردند از صدا و موج انفجار تسلیحات دور بودند. جهتیابهای تسلیحات در بالاترین نقطه بودند و سرهای فاصلهیابهای نوری آنها از طرفین آنها به جلو آمده بودند که ظاهر متفاوتی به آنها داده بود.
فاکتورهای بالیستیک اندازهگیری نشده و غیرقابل کنترل همانند دما، رطوبت، فشار بارومتری، جهت و سرعت باد در ارتفاع بالا به تنظیم نهایی از طریق مشاهدهٔ فرود گلوله نیاز داشت. اندازهگیری محدودهٔ دید (هم هدف و هم پاشندگی توپ گلوله) قبل از مطرح شدن رادار دشوار بود. بریتانیاییها فاصله-یابهای همزمان را ترجیح دادند در حالیکه آلمانیها به نوع استروسکوپی علاقه داشتند. اولی قدرت کمی در یافتن فاصله از هدف نامشخص داشت اما برای اپراتور در مدت زمان طولانی استفاده از آن راحتتر بود، دومی برعکس مورد اول بود.
کامپیوتر Ford Mk 1 Ballistic. نام فاصلهنگهدار برای توصیف کارکردهای بسیار پیچیده فاصله-نگهدار کافی نبود. کامپیوتر Mk 1 Ballistic اولین فاصلهیاب بود که به آن کامپیوتر میگفتند. به سه نگدارندهٔ پیستول در پیشزمینه توجه داشته باشید. آنها شلیک توپها را انجام میدادند.
زیردریاییها نیز به دلایل مشابه به کامپیوترهای کنترل شلیک مجهز شدند، اما مشکل آنها برجستهتر بود؛ در «شلیک» معمولی، یک تا دو دقیقه زمان لازم است تا اژدر به هدف خود برسد. محاسبهٔ «هدایت» دقیق با توجه به حرکت نسبی دو کشتی بسیار دشوار بود و کامپیوترهای دادههای اژدر برای بهبود زیاد در سرعت این محاسبات افزوده شدند.
در کشتی نوعی بریتانیایی در جنگ جهانی دوم، سیستم کنترل شلیک برجکهای جداگانهٔ تسلیحات را به برج هدایتکننده متصل میکرد (جائیکه تجهیزات دیدهبانی قرار داشتند) و کامپیوتر آنالوگ در قلب کشتی قرار داشت. در برج هدایتکننده، اپراتورها تلسکوپهای خود را روی هدف تنظیم می-کردند؛ یکی از تلسکوپها ارتفاع و دیگری سمت یا جهت را میسنجید. اندازهگیریها توسط میز کنترل شلیک به جهات و ارتفاعهایی برای شلیک تسلیحات تبدیل میشدند. در برجکها، شخص نشانهگیر ارتفاع تسلیحات را برای تطبیق با شاخص ارتفاع انتقالی از میز کنترل شلیک تنظیم میکرد –نشانهگیر برجک همین کار را برای جهت انجام میداد. هرگاه تسلیحات روی هدف قرار میگرفت، شلیک آنها به صورت مرکزی انجام میشد.[۱۰]
حتی با مکانیزاسیون زیاد روی این فرایند، هنوز به کار زیاد انسانی نیاز بود؛ ایستگاه انتقال (اتاقکی که میز درییر داخل آن قرار داشت) برای تسلیحات اصلی هوود ۲۷ خدمه را دربرداشت.
جهتیابها تا حد زیادی در معرض شلیک دشمن قرار داشتند. قرار دادن زره بسیار سنگین در ارتفاع بالای کشتی دشوار بود و حتی اگر مانع از شلیک میشد، خود اثر به تنهایی ممکن بود جهتیابی تجهیزات را تغییر دهد. زره بیشتر برای حفاظت در برابر توپهای کوچکتر و برخورد اجزا به سایر بخشهای کشتی یک محدودیت محسوب میشد.
سیستمهای دقیق کنترل شلیک در ابتدای قرن ۲۰ معرفی شدند. تصویر نیمبرشی از تخریبگر. کامپیوتر آنالوگ در زیر عرشه در مرکز تصویر نشان داده شدهاست و با عبارت «Gunnery Calculating Position» نمایش داده شدهاست
عملکرد کامپیوتر آنالوگ شگفتانگیز بود. کشتی جنگی USS North Carolina در طول رزمایش ۱۹۴۵ میتوانست راهکار شلیک دقیقی را [۱۲] روی هدف در طول یک سری از شلیکهای بسیار سریع داشته باشد [۱۳]. این مزیت اساسی برای جنگ محسوب میشد تا در حین درگیری با دشمن قدرت مانور داشت.
درگیریهای دریایی شبانه از فاصلهٔ دور زمانی امکانپذیر شد که دادههای رادار به صورت ورودی در اختیار فاصلهنگهدار قرار داده شدند. کارایی این ترکیب در نوامبر سال ۱۹۴۲ در جنگ سوم جزیرهٔ ساوو نشان داده شد که در آن کشتی USS Washington با کشتی جنگی ژاپنی کیریشیما در فاصله-ی ۸۴۰۰ یاردی (۷٫۷ کیلومتری) در شب درگیر شدند. کیریشما شعلهور شد و چند انفجار در آن رخ داد و با خدمهٔ خود غرق شد. حداقل ۹ گلولهٔ ۱۶-اینچی (۴۱۰ میلیمتر) از ۷۵ شلیک (نرخ برخورد ۱۲٪) به این کشتی برخورد کرد[۱۱] بقایای کیریشما در سال ۱۹۹۲ کشف شد و مشاهده شد که کل بخش سینی کشتی وجود ندارد[۱۲] ژاپنیها در طول جنگ جهانی دوم بخشهایی مانند رادار یا کنترل خودکار شلیک را در سطح نیروی دریایی آمریکا توسعه نداده و بسیار عقب بودند.[۱۳]
در سالهای ۱۹۵۰، برجکهای تسلیحات تا حد زیادی بدون دخالت انسان و خودکار بودند بطوریکه نشانهگیر از راه دور و از مرکز کنترل کشتی با استفاده از ورودیهای رادار و سایر منابع کنترل میشدند.
آخرین نبرد برای فاصلهنگهدارهای آنالوگ حداقل برای نیروی دریایی ایالات متحده در جنگ خلیج فارس در سال ۱۹۹۱ بود [۱۶] در این جنگ فاصله نگهدارها روی کشتیهای جنگی کلاس آیوا جهتگیری گلولهها را در نبرد بر عهده داشتند.
کنترل شلیک از هوا
نشانه گیرهای بمب افکن در جنگ جهانی دوم
اولین کاربرد سیستمهای کنترل شلیک، در هواپیمای بمب افکن بود که از دستگاه نشانهگیری بمب برای پیشبینی و نمایش نقطهٔ اثر یا فرود بمب انداخته شده در آن لحظه از روی دادههای مربوط به ارتفاع و سرعت هواپیما استفاده میکرد. بهترین دستگاه در ایالات متحده دستگاه نشانهگیری بمب نوردن بود.
نشانه گیرهای بمب افکن هوایی در جنگ جهانی دوم
از سیستمهای ساده که تحت عنوان نشانهگیرهای محاسباتی پیشرو نیز شناخته میشدند بعداً در هواپیما و در جنگ به عنوان نشانه گیرهای تسلیحات ژیرو استفاده شد. این دستگاهها از ژیروسکوپ برای اندازهگیری سرعت شلیکها استفاده میکردند و نقطهٔ هدف نشانه گیر توپ را برای در نظر گرفتن این امر جابجا میکردند با این هدف که نقطهٔ هدف از طریق نشانه گیر رفلکتور وجود داشته باشد. تنها ورودی دستی برای این نشانه گیر فاصلهٔ هدف بود که معمولاً از طریق تنظیم اندازهٔ اسپن بالای هدف در برخی از فواصل شناخته شده انجام میشد. دستگاههای کوچک رادار در دوران بعد از جنگ برای خودکار کردن این ورودی افزوده شدند اما این کار تقریباً قبل از زمانی افزوده شد که خلبان در مورد سرعت آن رضایت داشته باشد.
سیستمهای بعد از جنگ جهانی دوم
با شروع جنگ ویتنام، پیش بین گر بمب افکن کامپیوتری جدیدی تحت عنوان سیستم بمب افکن ارتفاع کم (LABS) روی سیستمهای هواپیما افزوده شد تا تسلیحات هسته ای را حمل کند. این بمب کامپیوتری جدید انقلابی محسوب میشد که در آن فرمان شلیک بمب توسط کامپیوتر و نه خلبان ارسال میشد؛ خلبان با استفاده از رادار یا سایر سیستمهای هدفگیری هدف را مشخص میکرد و سپس با انداختن بمب موافقت میکرد و سپس کامپیوتر این کار را با «نقطهٔ فرود» محاسبه شده بعد از چند ثانیه انجام میداد. این کار با سیستمهای قبلی فرق داشت و هرچند سیستمهای قبلی نیز کامپیوتری بودند اما هنوز «نقطهٔ فرود» را محاسبه میکردند تا مشخص شود که اگر بمب در آن لحظهای انداخته شود کجا فرود خواهد آمد. مزیت اساسی این روش در آن است که میتوان تسلیحات را حتی در حین مانور هواپیما با دقت پرتاب کرد. برای اکثر نشانه گرهای بمب تا این زمان لازم بود هواپیما ارتفاع (معمولاً سطح) ثابتی داشته باشد هرچند نشانه گیرهای شیرجه ای (dive) نیز چیز معمولی بودند.
سیستم LABS اساساً برای تسهیل تاکتیکی تحت عنوان بمباران در حین صعود هواپیما طراحی شد تا به هواپیما این اجازه را بدهد که خارج از شعاع موج انفجار تسلیحات قرار بگیرد. اصول محاسبهٔ نقطهٔ فرود در نهایت روی کامپیوترهای کنترل شلیک در بمب افکنهای بعدی و هواپیمای جنگی افزوده شد که امکان شلیک بمب در سطح [ثابت]، شیرجه و صعود را میسر میکرد. همچنین، با افزوده شدن کامپیوتر کنترل شلیک به سیستمهای توپخانه، کامپیوتر میتوانست مشخصات پرواز تسلیحات ارسالی را در نظر بگیرد.
کنترل شلیک زمینی
کنترل شلیک ضدهوایی
با شروع جنگ جهانی دوم، عملکرد ارتفاع هواپیما تا حد زیادی افزایش یافت بطوریکه تسلیحات ضدهوایی با مسائل پیشبینی کنندهٔ مشابهی مواجه بودند و تا حد زیادی به کامپیوترهای کنترل شلیک مجهز بودند. اختلاف اساسی بین این سیستمها و سیستمهای روی کشتی اندازه و سرعت بود. اولین نمونههای سیستم کنترل با زاویهٔ بالا یا HACS در نیروی دریایی سلطنتی بریتانیا مثالی از سیستمی بودند که بر مبنای این فرض پیش بین کار میکرد که سرعت، جهت و ارتفاع هدف ممکن است در حین چرخهٔ پیشبینی ثابت بماند بطوریکه در فاصلهٔ زمانی بین چاشنی گذاری بمب و زمان حرکت بمب به سمت هدف قرار داشت. سیستم USN Mk 37 از فرضیات مشابهی استفاده میکرد بطوریکه میتوانست سرعت ثابت مربوط به تغییرات ارتفاع را پیشبینی کند. پیش بین گر کریسون نمونه ای از سیستمی است که برای حل مسألهٔ نشانهگیری در زمان-واقعی ساخته شد که این کار تنها با نشانهگیری جهتیاب روی هدف و سپس هدفگیری بمب روی پوینتری که روی آن نشانه رفتهاست انجام میشود. همچنین، این دستگاه عمداً سبک و کوچک ساخته شد تا جابجایی آن همراه تسلیحاتی که برای آنها بکار میرود آسان باشد.
از سیستم ضدهوایی M-9/SCR-584 مبتنی بر رادار برای هدایت تسلیحات دفاعی هوایی از سال ۱۹۴۳ استفاده میشود. SCR-584 مربوط به آزمایشگاه تابش MIT اولین سیستم راداری با ردیابی خودکار بود، M-9 آزمایشگاه بل[۱۴] کامپیوتر کنترل شلیک آنالوگ الکترونیکی بود که جایگزین کامپیوترهای مکانیکی پیچیده شد که ساخت آنها دشوار بود (همانند Sperry M-7 یا پیش بین گر کرسون بریتانیایی). همراه با ماسوره گذاری مجاور VT، این سیستم عمل فوق العادهٔ پرتاب تسلیحات کروز V-I را با کمتر از ۱۰۰ گلوله در هر هواپیما انجام داد (چند هزار گلوله در سیستمهای ابتدایی AA معمول بود)[۱۵][۱۶] این سیستم در دفاع لندن و آنتورپ [بلژیک] در مقابل VI مفید بود.
هرچند سیستمهای کنترل شلیک ضدهوایی جزو سیستمهای کنترل شلیک زمینی محسوب میشوند میتوان از آنها در سیستمهای دریایی و هوایی نیز بهره برد.
کنترل شلیک توپخانه ساحلی
در ایالات متحده، سیستمهای کنترل شلیک توپخانهٔ ساحلی در پایان قرن ۱۹ ایجاد شد و تا جنگ جهانی دوم پیشرفت داشت.[۱۷]
سیستمهای ابتدایی از چند ایستگاه مشاهده یا ایستگاه عقب (شکل ۱) برای یافتن و ردیابی کردن اهدافی استفاده کردند که به اسکلههای آمریکایی حمله کردند. سپس دادههای گرفته شده از این ایستگاهها در اختیار اتاق نقشهکشی قرار داده میشد که در آنجا دستگاههای مکانیکی آنالوگ همانند بورد نقشهکشی برای تخمین مکان اهداف و استخراج دادههای شلیک برای توپهایی از تسلیحات ساحلی برای دفع آنها بکار برده میشد.
دژهای تسلیحات ساحلی ایالات متحده همراه با انواع مهمات از خمپارههای دفاع ساحلی ۱۲ اینچی تا تسلیحات میانبرد ۳ و ۶ اینچی تا تسلیحات بزرگ شامل دیوارهٔ زرهی ۱۰ و ۱۲ اینچی و تسلیحات حامل ناپدیدشونده، تسلیحات مسلسل ۱۴ اینچی، و کانن ۱۶ اینچی قبل از جنگ جهانی دوم و تا آن وجود داشت.
کنترل شلیک در توپخانهٔ ساحلی از نظر اصلاح دادههای شلیک برای عواملی مانند شرایط آب و هوایی، شرایط باروت بکار رفته، یا چرخش زمین بسیار پیچیدهتر شد. تدارکاتی نیز برای تنظیم دادههای شلیک برای فرود مشاهده شدهٔ گلوله مهیا شد. همانطورکه در شکل ۲ نشان داده شدهاست، همهٔ این اطلاعات دوباره به اتاقهای نقشهکشی برگردانده شدند تا برنامهریزی زمانی بسیار دقیقی انجام شود که توسط سیستم زنگ فاصلهٔ زمانی کنترل میشد که در سرتاسر سیستم دفاع هر اسکله ای به صدا در میآید.
درست بعد از جنگ جهانی دوم، کامپیوترهای دادههای تسلیحات الکترومکانیکی متصل به رادارهای دفاع ساحلی جای مشاهدهٔ نوری و روشهای نقشهکشی دستی را در کنترل توپخانهٔ ساحلی گرفتند. حتی بعد از آن، روشهای دستی به عنوان پشتیبان در پایان جنگ استفاده شدند.
میتوان از سیستمهای کنترل شلیک زمینی هم در شلیک مستقیم و هم شلیک غیرمستقیم در درگیری نظامی بهره برد. این سیستمها در تسلیحاتی وجود دارند که در محدودهٔ مهمات دستی کوچک تا تسلیحات توپخانه ای بزرگ قرار دارند.
سیستمهای پیشرفتهٔ کنترل شلیک
کامپیوترهای پیشرفتهٔ کنترل شلیک همانند کامپیوترهای با عملکرد بالا به صورت دیجیتالی هستند. عملکرد افزوده شده اساساً این امکان را فراهم می-آورد تا بتوان هر نوع ورودی از چگالی هوا و باد، تا فرسودگی لولهٔ تسلیحات و اعوجاج ناشی از گرما را در نظر گرفت. این نوع اثرات برای هرگونه تسلیحاتی چشمگیر هستند و کامپیوترهای کنترل شلیک روی پلتفرمهای بسیار کوچک هم وجود دارند. تانکها یکی از کاربردهای ابتدایی بودند که نشانهگیری خودکار هدف از فاصلهیاب لیزری و اندازهگیر اعوجاج لوله استفاده کردند. کامپیوترهای کنترل شلیک نه تنها برای کاننهای بزرگ مفید هستند بلکه میتوان از آنها برای تسلیحات ماشینی، کاننهای کوچک، مهمات هدایت شده، گلولهها، نارنجکها، راکتها و هر نوع تسلیحاتی استفاده کرد که دارای پارامترهای شلیک یا شلیک متغیر هستند. آنها معمولاً روی کشتیها، زیردریاییها، هواپیماها، تانکها و حتی برخی تسلیحات کوچک نیز نصب میشوند برای نمونه پرتاب کنندههای نارنجک برای استفاده در گلولهٔ تهاجمی بول پاپ F2000 نشنال فابریک ایجاد شدند. کامپیوترهای کنترل شلیک از تمامی مراحل فناوری که کامپیوترها دارند عبور کردهاند برخی از طراحیها بر مبنای فناوری آنالوگ و سپس لولههای خلأ هستند که بعداً جایگزین ترانزیستورها شدند.
سیستمهای کنترل شلیک اغلب به حسگرها (همانند سونار، رادار، جستجو و ردیابی مادون قرمز، فاصلهیابهای لیزر، بادسنج، بادنما، ترمومتر، بارومتر و غیره) متصل هستند تا میزان اطلاعاتی را که باید به صورت دستی برای محاسبهٔ راهکار مناسب وارد کرد حذف یا کاهش داد. سونار، رادار، IRST و فاصلهیابها میتوانند جهت و فاصلهٔ هدف را ارائه دهند. بهطور جایگزین، میتوان از نشانه گیر نوری استفاده کرد بشرطی که اپراتور بتواند به سادگی محل هدف را نشانهگیری کند. این کار از وارد کردن فاصله توسط شخص با استفاده از روشهای دیگر و هشدار کم به هدف تحت تعقیب راحتتر است. معمولاً، تسلیحاتی که در فواصل بلند شلیک میشوند نیاز به اطلاعات محیط (فاصله ای که مهمات میتوانند طی کنند) میزان باد، دما، چگالی هوا و غیره دارند که بر مسیر آن تأثیر خواهد گذاشت بنابراین داشتن اطلاعات دقیق برای داشتن راهکاری خوب ضروری است. برخی مواقع، برای راکتهای دوربرد، دادههای محیطی باید در ارتفاعهای بلند یا بین نقطهٔ شلیک و هدف بدست بیاید. اغلب، از ماهوارهها یا بالونها برای گردآوری این اطلاعات استفاده میشود.
به محض محاسبهٔ روش شلیک، بسیاری از سیستمهای کنترل شلیک نیز میتوانند هدفگیری کرده و مهمات را شلیک کنند. این امر با توجه به سرعت و دقت انجام میشود و در رابطه با هواپیما یا تانک، برای اینکه خلبان/شخص شلیک کننده/غیره بتواند همزمان کارهای دیگری مانند ردیابی هدف یا پرواز با هواپیما را انجام دهد. حتی اگر سیستم نتواند خود تسلیحات شلیک شده را جهتگیری کند، برای نمونه کانن ثابت روی هواپیما، میتواند کمکهایی در مورد هدفگیری را در اختیار اپراتور قرار دهد. معمولاً، نقاط کانن رو به جلو هستند و خلبان باید هواپیما را طوری کنترل کند که قبل از شلیک به درستی جهتیابی شود. در بیشتر هواپیماها نشانهگیری به شکل «پایپر» ظاهر میشود که روی صفحه نمایش روبروی خلبان (HUD) مشاهده میشود. پایپر به خلبان نشان میدهد که هدف باید در چه نسبتی از هواپیما قرار بگیرد تا اصابت به آن انجام شود. هرگاه خلبان مانور روی هواپیما را انجام دهد بطوریکه هدف و پایپر روی هم قرار گیرند، او شلیک را انجام میدهد یا در برخی از هواپیماها مهمات به صورت خودکار به این نقطه شلیک میشوند تا بر تأخیر خلبان فایق آمد. در حالت شلیک موشک، کامپیوتر کنترل شلیک ممکن است فیدبکی در مورد اینکه هدف در محدوده موشک قرار دارد یا نه و اینکه اگر شلیک انجام شود به هدف برخورد میکند یا نه در اختیار خلبان قرار میدهد. سپس خلبان منتظر میماند تا قرائت احتمالات به صورت رضایت بخشی قبل از پرتاب مهمات امکانپذیر باشد.
تاریخچهٔ اولیهٔ کنترل شلیک دریایی بیشتر در ارتباط با درگیری با اهداف در محدوده یا فاصلهٔ دید (قابل رویت) بود (که تحت عنوان شلیک مستقیم نیز شناخته میشود). در حقیقت، اکثر درگیریهای دریایی قبل از سال ۱۸۰۰ در فاصلهٔ ۲۰ تا ۵۰ یارد (۲۰ تا ۵۰ متر) بود [۱]. حتی در طول جنگ داخلی آمریکا، درگیری مشهور بین USS Monitor و CS Virginia اغلب در فاصلهٔ کمتر از ۱۰۰ یارد (۹۰ متر) بود.[۱]
پیشرفتهای فنی سریع در اواخر قرن ۱۹ باعث شد تا این محدوده [درگیری] تا حدی افزایش یابد که شلیک توپخانه امکانپذیر باشد. تسلیحات با گلولهٔ توپ انفجاری بسیار بزرگ با وزن نسبتاً کم (در مقایسه با توپهای تمام فلزی) به قدری محدودهٔ درگیری را افزایش دادند که مشکل اساسی هدفگیری آنها در حین حرکت کشتی روی موجهای متحرک بود. این مشکل با معرفی ژیروسکوپ (gyroscope) حل شد که حرکتها را تصحیح کرد و دقتهایی کمتر از درجه را فراهم آورد. هماکنون میتوان توپها را با هر اندازهای ساخت که بسرعت اندازهٔ ۱۰ اینچ کالیبر با ورود به قرن ۲۰ میسر شد. این تسلیحات دارای چنان محدودهٔ درگیری زیادی بودند که تنها مشکل آنها دیدن هدف بود که منجر به استفاده از دکلها (masts) در داخل کشتیها شد.
پیشرفت فنی دیگر پیدایش توربین بخار بود که عملکرد کشتیها را بشدت افزایش داد. کشتیهای پروانهای ابتدایی شاید قابلیت ۱۶ گره (knot) را داشتند، اما اولین کشتیهای توربینی بزرگ قابلیتی بیش از ۲۰ گره را داشتند. وجود این کشتیها همراه با محدودهٔ زیاد شلیک تسلیحات باعث شد تا کشتیها مسافت خیلی زیادی (طول چند کشتی) را از زمان شلیک گلوله توپ تا فرود آمدن آن بپیمایند. دیگر نیازی به سنجش هدف [با چشم] با هر دقت احتمالی نبود. همچنین، در درگیریهای دریایی، لازم است تا شلیک چند توپ همزمان کنترل شود.
کنترل شلیک تسلیحات دریایی معمولاً شامل سه مرحله پیچیدگی است. کنترل محلی ناشی از قرارگیری تسلیحات اصلی که هدف گروههای تسلیحاتی جدا است. هدفِ مورد نظر کنترل جهتیاب تمامی توپها روی کشتی در یک هدف منفرد است. شلیک هماهنگ توپخانه از گروهی از کشتیها روی یک هدف نقطه مشترک عملیات گروهی کشتیهای جنگی بودند. اصلاح سرعت سطحی باد، حرکت و زاویه کشتی شلیککننده، دمای انبار مهمات و باروت، رانش پرتابه-ها، قطر خود توپ که برای افزایش فاصله تیراندازیها تنظیم شدهاست، و نرخ تغییر محدوده یا فاصله با اصلاح بیشتر روی روش شلیک بر مبنای مشاهدهٔ شلیکهای قبلی انجام شد.
جهتهای بدست آمده که تحت عنوان روش شلیک شناخته میشوند ممکن است برای هدفگیری در اختیار برجکها قرار گیرند. اگر شلیکها به هدف برخورد نکنند مشاهدهگر باید روی فاصله و جهت شلیکهای از دست رفته کار کند و میتوان این اطلاعات را همراه با هر تغییر دیگری روی اطلاعات در اختیار کامپیوتر قرار داد تا شلیک دیگری انجام شود.
در ابتدا، هدف این بود که توپخانهها از روش شلیک نقطهزنی استفاده کنند. این کار شامل شلیک تسلیحات به هدف، مشاهدهٔ نقطهٔ اثر (محل فرود)، و اصلاح هدف بر مبنای محل مشاهده شدهٔ فرود گلوله توپ بود که این کار با بزرگتر شدن محدودهٔ شلیک بسیار دشوارتر شد.[۲]
بین جنگ داخلی آمریکا و ۱۹۰۵، چند پیشرفت کوچک همانند دستگاههای نشانهروی تلسکوپی و فاصلهیابهای نوری در کنترل شلیک ایجاد شدند. همچنین، پیشرفتهای رویهای همانند استفاده از بوردهای نقشهبرداری برای پیشبینی دستی محل کشتی در حین درگیری وجود داشت[۳]
سپس، از محاسبهگرهای مکانیکی بسیار پیچیده برای هدفگیری مناسب پرتابه استفاده شد که این کار معمولاً با نقطهیابهای مختلف و اندازهگیری فاصلههای ارسالی به ایستگاه نقطهیاب مرکزی در داخل کشتی انجام شد. تیمهای جهتیابِ شلیک مواردی همانند مکان، سرعت، جهت کشتی و هدف آن، همچنین تنظیمات متعددی برای اثر کوریولس (Coriolis)، اثرات آب و هوایی روی هوا و سایر تنظیمات را در نظر گرفتند. تقریباً در سال ۱۹۰۵، دستگاه کمکی کنترل شلیک مکانیکی همانند میز درییر (Dreyer Table), Dumaresq (که بخشی از میز درییر هم بود) و ساعت آرگو (Argo Clock) مطرح شدند. اما این دستگاهها سالها زمان برد تا کاربرد گستردهای بیابند.[۴][۵]]. این دستگاهها اشکال ابتدایی فاصلهنگهدارها (rangekeeper) بودند.
آرتور پولن و فردریک چارلز درییر به صورت جداگانه اولین سیستمهایی از این نوع را ایجاد کردند. پولن بعد از مشاهدهٔ دقت پایین توپخانهٔ دریایی در آموزش نظامی نزدیک مالت در سال ۱۹۰۰ شروع به کار بر روی این موضوع کرد[۶]لورد کلوین که به عنوان دانشمند برجستهٔ بریتانیایی شناخته میشد اولین بار استفاده از کامپیوتر آنالوگ را برای حل معادلاتی پیشنهاد داد که از حرکت نسبی کشتیهای درگیر در نبرد و تأخیر زمانی در حرکت گلولهٔ توپخانه استفاده میکرد تا منحنی مسیر لازم و بدین ترتیب جهت و ارتفاع توپها را محاسبه کند.
هدف پولن ایجاد کامپیوتر مکانیکی مرکب و طرح خودکار محدودهها و سرعتها برای استفاده در کنترل مرکزی شلیک بود. برای دسترسی به داده-های دقیق موقعیت و حرکت نسبی هدف، پولن واحد نقشهکشی (یا پلاتری) را برای اکتساب این دادهها ایجاد کرد. برای این کار او ژیروسکوپی را برای انحراف کشتی جنگی اضافه کرد. همانند پلاتر، ژیروسکوپ اولیه به توسعهٔ اساسی برای فراهم کردن دستورالعمل پیوسته و قابل اعتماد نیاز داشت.[۷]]. هرچند نمونههای آزمایشی در سال ۱۹۰۵ و ۱۹۰۶ غیرموفق بودند، اما امیدبخش به نظر میرسیدند. پولن در این کار توسط دریاسالار چکیی فیشر، دریاسالار آرتور نیوت ویلسون و مدیر مهمات و اژدر دریایی (DNO) جان جلیکو ترغیب شد. پولن کار خود را با چند تست انجام شده روی کشتی جنگی متعلق به نیروی دریایی سلطنتی ادامه داد.
در عین حال، گروهی به رهبری درییر سیستم مشابهی را طراحی کردند. هر چند هر دو سیستم برای کشتیهای جدید و موجود نیروی دریایی سلطنتی سفارش داده شدند، نهایتاً سیستم درییر در شکل نهایی Mark IV* خود مقبولیت بیشتری پیدا کرد. اضافه شدن کنترل جهتیاب باعث شد تا سیستم کنترل شلیک کامل و واقعی برای کشتیهای جنگ جهانی اول میسر شود و اکثر کشتیهای نیروی دریایی سلطنتی تا اواسط ۱۹۱۶ به آنها مجهز شدند. جهتیاب در بالای کشتی قرار گرفت جاییکه اپراتورها دید وسیعی نسبت به هر شخص نشانهگیر در برجکها داشتند. این دستگاه همچنین قادر بود شلیک از برجکها را طوری هماهنگ کند که شلیک مرکب آنها به صورت هماهنگ انجام شود. این کار هدفگیری را بهتر کرد. فاصلهیابهای نوری بزرگتر تخمین محل دشمن را در زمان شلیک بهبود دادند. نهایتاً، بجای این سیستم از میز کنترل آتش ادمایرالتی (Admiralty Fire Control Table) برای کشتیهای ساخته شده بعد از ۱۹۲۷ استفاده شد.[۸]
میز کنترل شلیک ادمیاریلتی در ایستگاه انتقال HMS Belfast
فاصلهنگهدارها در خدمات بلند مدت خود اغلب به صورت فناوری پیشرفته به-روزرسانی شدند و در جنگ جهانی دوم آنها بخش بسیار مهم سیستم کنترل شلیک یکپارچه شدند. یکپارچهسازی رادار در سیستم کنترل شلیک در ابتدای جنگ جهانی دوم این امکان را برای کشتیها فراهم کرد تا عملیات مؤثر شلیک در فاصلهٔ زیاد و در آب و هوای بد در شب میسر شود[۹] برای سیستمهای کنترل شلیک در نیروی دریایی ایالات متحده، به لینک سیستمهای کنترل شلیک توپ کشتی (ship gun fire-control systems.) مراجعه کنید.
استفاده از شلیک کنترل شده با جهتیاب همراه با کامپیوتر کنترل شلیک باعث شد تا کنترل نشانهگیر از روی برجکهای مجزا به محل مرکزی جابجا شود؛ هرچند که پایههای مجزای اسلحهها و برجکهای چند توپخانهای می-تواند استفاده از گزینهٔ کنترل محلی را درحین آسیب ناشی از نبرد روی انتقال اطلاعات جهتیاب حفظ کند (اینها ممکن است نسخههای سادهتر تحت عنوان میزهای برجک (turret tables) در نیروی دریایی سلطنتی باشد). در نتیجه تسلیحات قابلیت شلیک در رگبارهای برنامهریزی شده را داشتند که هر توپ مسیر کمی متفاوت داشت. پراکندگی شلیک ناشی از اختلاف در هر یک از تسلیحات مجزا، گلولههای مجزا، دنبالهٔ آتش باروت، و اعوجاج گذرای ساختار کشتی بدون تردید در محدوده درگیریهای دریایی معمول بزرگ بود. جهتیابها در بالای سازههای بلند دید بهتری از موقعیت دشمن در مقایسه با دید جهتیابهای قرار گرفته روی برجک داشتند و خدمهای که روی آنها کار میکردند از صدا و موج انفجار تسلیحات دور بودند. جهتیابهای تسلیحات در بالاترین نقطه بودند و سرهای فاصلهیابهای نوری آنها از طرفین آنها به جلو آمده بودند که ظاهر متفاوتی به آنها داده بود.
فاکتورهای بالیستیک اندازهگیری نشده و غیرقابل کنترل همانند دما، رطوبت، فشار بارومتری، جهت و سرعت باد در ارتفاع بالا به تنظیم نهایی از طریق مشاهدهٔ فرود گلوله نیاز داشت. اندازهگیری محدودهٔ دید (هم هدف و هم پاشندگی توپ گلوله) قبل از مطرح شدن رادار دشوار بود. بریتانیاییها فاصله-یابهای همزمان را ترجیح دادند در حالیکه آلمانیها به نوع استروسکوپی علاقه داشتند. اولی قدرت کمی در یافتن فاصله از هدف نامشخص داشت اما برای اپراتور در مدت زمان طولانی استفاده از آن راحتتر بود، دومی برعکس مورد اول بود.
کامپیوتر Ford Mk 1 Ballistic. نام فاصلهنگهدار برای توصیف کارکردهای بسیار پیچیده فاصله-نگهدار کافی نبود. کامپیوتر Mk 1 Ballistic اولین فاصلهیاب بود که به آن کامپیوتر میگفتند. به سه نگدارندهٔ پیستول در پیشزمینه توجه داشته باشید. آنها شلیک توپها را انجام میدادند.
زیردریاییها نیز به دلایل مشابه به کامپیوترهای کنترل شلیک مجهز شدند، اما مشکل آنها برجستهتر بود؛ در «شلیک» معمولی، یک تا دو دقیقه زمان لازم است تا اژدر به هدف خود برسد. محاسبهٔ «هدایت» دقیق با توجه به حرکت نسبی دو کشتی بسیار دشوار بود و کامپیوترهای دادههای اژدر برای بهبود زیاد در سرعت این محاسبات افزوده شدند.
در کشتی نوعی بریتانیایی در جنگ جهانی دوم، سیستم کنترل شلیک برجکهای جداگانهٔ تسلیحات را به برج هدایتکننده متصل میکرد (جائیکه تجهیزات دیدهبانی قرار داشتند) و کامپیوتر آنالوگ در قلب کشتی قرار داشت. در برج هدایتکننده، اپراتورها تلسکوپهای خود را روی هدف تنظیم می-کردند؛ یکی از تلسکوپها ارتفاع و دیگری سمت یا جهت را میسنجید. اندازهگیریها توسط میز کنترل شلیک به جهات و ارتفاعهایی برای شلیک تسلیحات تبدیل میشدند. در برجکها، شخص نشانهگیر ارتفاع تسلیحات را برای تطبیق با شاخص ارتفاع انتقالی از میز کنترل شلیک تنظیم میکرد –نشانهگیر برجک همین کار را برای جهت انجام میداد. هرگاه تسلیحات روی هدف قرار میگرفت، شلیک آنها به صورت مرکزی انجام میشد.[۱۰]
حتی با مکانیزاسیون زیاد روی این فرایند، هنوز به کار زیاد انسانی نیاز بود؛ ایستگاه انتقال (اتاقکی که میز درییر داخل آن قرار داشت) برای تسلیحات اصلی هوود ۲۷ خدمه را دربرداشت.
جهتیابها تا حد زیادی در معرض شلیک دشمن قرار داشتند. قرار دادن زره بسیار سنگین در ارتفاع بالای کشتی دشوار بود و حتی اگر مانع از شلیک میشد، خود اثر به تنهایی ممکن بود جهتیابی تجهیزات را تغییر دهد. زره بیشتر برای حفاظت در برابر توپهای کوچکتر و برخورد اجزا به سایر بخشهای کشتی یک محدودیت محسوب میشد.
سیستمهای دقیق کنترل شلیک در ابتدای قرن ۲۰ معرفی شدند. تصویر نیمبرشی از تخریبگر. کامپیوتر آنالوگ در زیر عرشه در مرکز تصویر نشان داده شدهاست و با عبارت «Gunnery Calculating Position» نمایش داده شدهاست
عملکرد کامپیوتر آنالوگ شگفتانگیز بود. کشتی جنگی USS North Carolina در طول رزمایش ۱۹۴۵ میتوانست راهکار شلیک دقیقی را [۱۲] روی هدف در طول یک سری از شلیکهای بسیار سریع داشته باشد [۱۳]. این مزیت اساسی برای جنگ محسوب میشد تا در حین درگیری با دشمن قدرت مانور داشت.
درگیریهای دریایی شبانه از فاصلهٔ دور زمانی امکانپذیر شد که دادههای رادار به صورت ورودی در اختیار فاصلهنگهدار قرار داده شدند. کارایی این ترکیب در نوامبر سال ۱۹۴۲ در جنگ سوم جزیرهٔ ساوو نشان داده شد که در آن کشتی USS Washington با کشتی جنگی ژاپنی کیریشیما در فاصله-ی ۸۴۰۰ یاردی (۷٫۷ کیلومتری) در شب درگیر شدند. کیریشما شعلهور شد و چند انفجار در آن رخ داد و با خدمهٔ خود غرق شد. حداقل ۹ گلولهٔ ۱۶-اینچی (۴۱۰ میلیمتر) از ۷۵ شلیک (نرخ برخورد ۱۲٪) به این کشتی برخورد کرد[۱۱] بقایای کیریشما در سال ۱۹۹۲ کشف شد و مشاهده شد که کل بخش سینی کشتی وجود ندارد[۱۲] ژاپنیها در طول جنگ جهانی دوم بخشهایی مانند رادار یا کنترل خودکار شلیک را در سطح نیروی دریایی آمریکا توسعه نداده و بسیار عقب بودند.[۱۳]
در سالهای ۱۹۵۰، برجکهای تسلیحات تا حد زیادی بدون دخالت انسان و خودکار بودند بطوریکه نشانهگیر از راه دور و از مرکز کنترل کشتی با استفاده از ورودیهای رادار و سایر منابع کنترل میشدند.
آخرین نبرد برای فاصلهنگهدارهای آنالوگ حداقل برای نیروی دریایی ایالات متحده در جنگ خلیج فارس در سال ۱۹۹۱ بود [۱۶] در این جنگ فاصله نگهدارها روی کشتیهای جنگی کلاس آیوا جهتگیری گلولهها را در نبرد بر عهده داشتند.
کنترل شلیک از هوا
نشانه گیرهای بمب افکن در جنگ جهانی دوم
اولین کاربرد سیستمهای کنترل شلیک، در هواپیمای بمب افکن بود که از دستگاه نشانهگیری بمب برای پیشبینی و نمایش نقطهٔ اثر یا فرود بمب انداخته شده در آن لحظه از روی دادههای مربوط به ارتفاع و سرعت هواپیما استفاده میکرد. بهترین دستگاه در ایالات متحده دستگاه نشانهگیری بمب نوردن بود.
نشانه گیرهای بمب افکن هوایی در جنگ جهانی دوم
از سیستمهای ساده که تحت عنوان نشانهگیرهای محاسباتی پیشرو نیز شناخته میشدند بعداً در هواپیما و در جنگ به عنوان نشانه گیرهای تسلیحات ژیرو استفاده شد. این دستگاهها از ژیروسکوپ برای اندازهگیری سرعت شلیکها استفاده میکردند و نقطهٔ هدف نشانه گیر توپ را برای در نظر گرفتن این امر جابجا میکردند با این هدف که نقطهٔ هدف از طریق نشانه گیر رفلکتور وجود داشته باشد. تنها ورودی دستی برای این نشانه گیر فاصلهٔ هدف بود که معمولاً از طریق تنظیم اندازهٔ اسپن بالای هدف در برخی از فواصل شناخته شده انجام میشد. دستگاههای کوچک رادار در دوران بعد از جنگ برای خودکار کردن این ورودی افزوده شدند اما این کار تقریباً قبل از زمانی افزوده شد که خلبان در مورد سرعت آن رضایت داشته باشد.
سیستمهای بعد از جنگ جهانی دوم
با شروع جنگ ویتنام، پیش بین گر بمب افکن کامپیوتری جدیدی تحت عنوان سیستم بمب افکن ارتفاع کم (LABS) روی سیستمهای هواپیما افزوده شد تا تسلیحات هسته ای را حمل کند. این بمب کامپیوتری جدید انقلابی محسوب میشد که در آن فرمان شلیک بمب توسط کامپیوتر و نه خلبان ارسال میشد؛ خلبان با استفاده از رادار یا سایر سیستمهای هدفگیری هدف را مشخص میکرد و سپس با انداختن بمب موافقت میکرد و سپس کامپیوتر این کار را با «نقطهٔ فرود» محاسبه شده بعد از چند ثانیه انجام میداد. این کار با سیستمهای قبلی فرق داشت و هرچند سیستمهای قبلی نیز کامپیوتری بودند اما هنوز «نقطهٔ فرود» را محاسبه میکردند تا مشخص شود که اگر بمب در آن لحظهای انداخته شود کجا فرود خواهد آمد. مزیت اساسی این روش در آن است که میتوان تسلیحات را حتی در حین مانور هواپیما با دقت پرتاب کرد. برای اکثر نشانه گرهای بمب تا این زمان لازم بود هواپیما ارتفاع (معمولاً سطح) ثابتی داشته باشد هرچند نشانه گیرهای شیرجه ای (dive) نیز چیز معمولی بودند.
سیستم LABS اساساً برای تسهیل تاکتیکی تحت عنوان بمباران در حین صعود هواپیما طراحی شد تا به هواپیما این اجازه را بدهد که خارج از شعاع موج انفجار تسلیحات قرار بگیرد. اصول محاسبهٔ نقطهٔ فرود در نهایت روی کامپیوترهای کنترل شلیک در بمب افکنهای بعدی و هواپیمای جنگی افزوده شد که امکان شلیک بمب در سطح [ثابت]، شیرجه و صعود را میسر میکرد. همچنین، با افزوده شدن کامپیوتر کنترل شلیک به سیستمهای توپخانه، کامپیوتر میتوانست مشخصات پرواز تسلیحات ارسالی را در نظر بگیرد.
کنترل شلیک زمینی
کنترل شلیک ضدهوایی
با شروع جنگ جهانی دوم، عملکرد ارتفاع هواپیما تا حد زیادی افزایش یافت بطوریکه تسلیحات ضدهوایی با مسائل پیشبینی کنندهٔ مشابهی مواجه بودند و تا حد زیادی به کامپیوترهای کنترل شلیک مجهز بودند. اختلاف اساسی بین این سیستمها و سیستمهای روی کشتی اندازه و سرعت بود. اولین نمونههای سیستم کنترل با زاویهٔ بالا یا HACS در نیروی دریایی سلطنتی بریتانیا مثالی از سیستمی بودند که بر مبنای این فرض پیش بین کار میکرد که سرعت، جهت و ارتفاع هدف ممکن است در حین چرخهٔ پیشبینی ثابت بماند بطوریکه در فاصلهٔ زمانی بین چاشنی گذاری بمب و زمان حرکت بمب به سمت هدف قرار داشت. سیستم USN Mk 37 از فرضیات مشابهی استفاده میکرد بطوریکه میتوانست سرعت ثابت مربوط به تغییرات ارتفاع را پیشبینی کند. پیش بین گر کریسون نمونه ای از سیستمی است که برای حل مسألهٔ نشانهگیری در زمان-واقعی ساخته شد که این کار تنها با نشانهگیری جهتیاب روی هدف و سپس هدفگیری بمب روی پوینتری که روی آن نشانه رفتهاست انجام میشود. همچنین، این دستگاه عمداً سبک و کوچک ساخته شد تا جابجایی آن همراه تسلیحاتی که برای آنها بکار میرود آسان باشد.
از سیستم ضدهوایی M-9/SCR-584 مبتنی بر رادار برای هدایت تسلیحات دفاعی هوایی از سال ۱۹۴۳ استفاده میشود. SCR-584 مربوط به آزمایشگاه تابش MIT اولین سیستم راداری با ردیابی خودکار بود، M-9 آزمایشگاه بل[۱۴] کامپیوتر کنترل شلیک آنالوگ الکترونیکی بود که جایگزین کامپیوترهای مکانیکی پیچیده شد که ساخت آنها دشوار بود (همانند Sperry M-7 یا پیش بین گر کرسون بریتانیایی). همراه با ماسوره گذاری مجاور VT، این سیستم عمل فوق العادهٔ پرتاب تسلیحات کروز V-I را با کمتر از ۱۰۰ گلوله در هر هواپیما انجام داد (چند هزار گلوله در سیستمهای ابتدایی AA معمول بود)[۱۵][۱۶] این سیستم در دفاع لندن و آنتورپ [بلژیک] در مقابل VI مفید بود.
هرچند سیستمهای کنترل شلیک ضدهوایی جزو سیستمهای کنترل شلیک زمینی محسوب میشوند میتوان از آنها در سیستمهای دریایی و هوایی نیز بهره برد.
کنترل شلیک توپخانه ساحلی
در ایالات متحده، سیستمهای کنترل شلیک توپخانهٔ ساحلی در پایان قرن ۱۹ ایجاد شد و تا جنگ جهانی دوم پیشرفت داشت.[۱۷]
سیستمهای ابتدایی از چند ایستگاه مشاهده یا ایستگاه عقب (شکل ۱) برای یافتن و ردیابی کردن اهدافی استفاده کردند که به اسکلههای آمریکایی حمله کردند. سپس دادههای گرفته شده از این ایستگاهها در اختیار اتاق نقشهکشی قرار داده میشد که در آنجا دستگاههای مکانیکی آنالوگ همانند بورد نقشهکشی برای تخمین مکان اهداف و استخراج دادههای شلیک برای توپهایی از تسلیحات ساحلی برای دفع آنها بکار برده میشد.
دژهای تسلیحات ساحلی ایالات متحده همراه با انواع مهمات از خمپارههای دفاع ساحلی ۱۲ اینچی تا تسلیحات میانبرد ۳ و ۶ اینچی تا تسلیحات بزرگ شامل دیوارهٔ زرهی ۱۰ و ۱۲ اینچی و تسلیحات حامل ناپدیدشونده، تسلیحات مسلسل ۱۴ اینچی، و کانن ۱۶ اینچی قبل از جنگ جهانی دوم و تا آن وجود داشت.
کنترل شلیک در توپخانهٔ ساحلی از نظر اصلاح دادههای شلیک برای عواملی مانند شرایط آب و هوایی، شرایط باروت بکار رفته، یا چرخش زمین بسیار پیچیدهتر شد. تدارکاتی نیز برای تنظیم دادههای شلیک برای فرود مشاهده شدهٔ گلوله مهیا شد. همانطورکه در شکل ۲ نشان داده شدهاست، همهٔ این اطلاعات دوباره به اتاقهای نقشهکشی برگردانده شدند تا برنامهریزی زمانی بسیار دقیقی انجام شود که توسط سیستم زنگ فاصلهٔ زمانی کنترل میشد که در سرتاسر سیستم دفاع هر اسکله ای به صدا در میآید.
درست بعد از جنگ جهانی دوم، کامپیوترهای دادههای تسلیحات الکترومکانیکی متصل به رادارهای دفاع ساحلی جای مشاهدهٔ نوری و روشهای نقشهکشی دستی را در کنترل توپخانهٔ ساحلی گرفتند. حتی بعد از آن، روشهای دستی به عنوان پشتیبان در پایان جنگ استفاده شدند.
میتوان از سیستمهای کنترل شلیک زمینی هم در شلیک مستقیم و هم شلیک غیرمستقیم در درگیری نظامی بهره برد. این سیستمها در تسلیحاتی وجود دارند که در محدودهٔ مهمات دستی کوچک تا تسلیحات توپخانه ای بزرگ قرار دارند.
سیستمهای پیشرفتهٔ کنترل شلیک
کامپیوترهای پیشرفتهٔ کنترل شلیک همانند کامپیوترهای با عملکرد بالا به صورت دیجیتالی هستند. عملکرد افزوده شده اساساً این امکان را فراهم می-آورد تا بتوان هر نوع ورودی از چگالی هوا و باد، تا فرسودگی لولهٔ تسلیحات و اعوجاج ناشی از گرما را در نظر گرفت. این نوع اثرات برای هرگونه تسلیحاتی چشمگیر هستند و کامپیوترهای کنترل شلیک روی پلتفرمهای بسیار کوچک هم وجود دارند. تانکها یکی از کاربردهای ابتدایی بودند که نشانهگیری خودکار هدف از فاصلهیاب لیزری و اندازهگیر اعوجاج لوله استفاده کردند. کامپیوترهای کنترل شلیک نه تنها برای کاننهای بزرگ مفید هستند بلکه میتوان از آنها برای تسلیحات ماشینی، کاننهای کوچک، مهمات هدایت شده، گلولهها، نارنجکها، راکتها و هر نوع تسلیحاتی استفاده کرد که دارای پارامترهای شلیک یا شلیک متغیر هستند. آنها معمولاً روی کشتیها، زیردریاییها، هواپیماها، تانکها و حتی برخی تسلیحات کوچک نیز نصب میشوند برای نمونه پرتاب کنندههای نارنجک برای استفاده در گلولهٔ تهاجمی بول پاپ F2000 نشنال فابریک ایجاد شدند. کامپیوترهای کنترل شلیک از تمامی مراحل فناوری که کامپیوترها دارند عبور کردهاند برخی از طراحیها بر مبنای فناوری آنالوگ و سپس لولههای خلأ هستند که بعداً جایگزین ترانزیستورها شدند.
سیستمهای کنترل شلیک اغلب به حسگرها (همانند سونار، رادار، جستجو و ردیابی مادون قرمز، فاصلهیابهای لیزر، بادسنج، بادنما، ترمومتر، بارومتر و غیره) متصل هستند تا میزان اطلاعاتی را که باید به صورت دستی برای محاسبهٔ راهکار مناسب وارد کرد حذف یا کاهش داد. سونار، رادار، IRST و فاصلهیابها میتوانند جهت و فاصلهٔ هدف را ارائه دهند. بهطور جایگزین، میتوان از نشانه گیر نوری استفاده کرد بشرطی که اپراتور بتواند به سادگی محل هدف را نشانهگیری کند. این کار از وارد کردن فاصله توسط شخص با استفاده از روشهای دیگر و هشدار کم به هدف تحت تعقیب راحتتر است. معمولاً، تسلیحاتی که در فواصل بلند شلیک میشوند نیاز به اطلاعات محیط (فاصله ای که مهمات میتوانند طی کنند) میزان باد، دما، چگالی هوا و غیره دارند که بر مسیر آن تأثیر خواهد گذاشت بنابراین داشتن اطلاعات دقیق برای داشتن راهکاری خوب ضروری است. برخی مواقع، برای راکتهای دوربرد، دادههای محیطی باید در ارتفاعهای بلند یا بین نقطهٔ شلیک و هدف بدست بیاید. اغلب، از ماهوارهها یا بالونها برای گردآوری این اطلاعات استفاده میشود.
به محض محاسبهٔ روش شلیک، بسیاری از سیستمهای کنترل شلیک نیز میتوانند هدفگیری کرده و مهمات را شلیک کنند. این امر با توجه به سرعت و دقت انجام میشود و در رابطه با هواپیما یا تانک، برای اینکه خلبان/شخص شلیک کننده/غیره بتواند همزمان کارهای دیگری مانند ردیابی هدف یا پرواز با هواپیما را انجام دهد. حتی اگر سیستم نتواند خود تسلیحات شلیک شده را جهتگیری کند، برای نمونه کانن ثابت روی هواپیما، میتواند کمکهایی در مورد هدفگیری را در اختیار اپراتور قرار دهد. معمولاً، نقاط کانن رو به جلو هستند و خلبان باید هواپیما را طوری کنترل کند که قبل از شلیک به درستی جهتیابی شود. در بیشتر هواپیماها نشانهگیری به شکل «پایپر» ظاهر میشود که روی صفحه نمایش روبروی خلبان (HUD) مشاهده میشود. پایپر به خلبان نشان میدهد که هدف باید در چه نسبتی از هواپیما قرار بگیرد تا اصابت به آن انجام شود. هرگاه خلبان مانور روی هواپیما را انجام دهد بطوریکه هدف و پایپر روی هم قرار گیرند، او شلیک را انجام میدهد یا در برخی از هواپیماها مهمات به صورت خودکار به این نقطه شلیک میشوند تا بر تأخیر خلبان فایق آمد. در حالت شلیک موشک، کامپیوتر کنترل شلیک ممکن است فیدبکی در مورد اینکه هدف در محدوده موشک قرار دارد یا نه و اینکه اگر شلیک انجام شود به هدف برخورد میکند یا نه در اختیار خلبان قرار میدهد. سپس خلبان منتظر میماند تا قرائت احتمالات به صورت رضایت بخشی قبل از پرتاب مهمات امکانپذیر باشد.