نوترون (به انگلیسی: Neutron) (با نشان {\displaystyle {\ce {n^0}}}{\displaystyle {\ce {n^0}}}) یکی از ذرات هستهای اتم با بار الکتریکی خنثی و جرم مطلق ۲۷- ۱۰ × ۱٬۶۷۴۸۲ کیلوگرم و جرم نسبی ۱٬۰۰۸۶۶۵۴۱ است و به همراه پروتون، بیشتر جرم اتم را تشکیل میدهند. تمامی اتمها (به جز هیدروژن معمولی یا پروتونیوم) در هستهی خود نوترون دارند. نوترون از یک کوارک بالا و دو کوارک پایین ساخته شده است.[۲]
جیمز چادویک در سال ۱۹۳۲ این ذره را، که رادرفورد در سال ۱۹۲۰ وجود آن را پیشبینی کرده بود، کشف کرد. پروتونها ذراتی با بار الکتریکی مثبت هستند و توسط نیروی کولنی به شدت همدیگر را دفع میکنند. علت اینکه پروتونها همدیگر را دفع نمیکنند، برهمکنش آنها با نوترونها توسط نیروی هستهای قوی است. نوترون در حال آزاد ذرهای ناپایدار است و عمر متوسط آن ۹۱۸ ثانیه است و به پروتون، الکترون و نوترینو واپاشیده میشود. به این واپاشی، واپاشی بتا منفی ({\displaystyle {\ce {\beta^{-}}}}{\displaystyle {\ce {\beta^{-}}}}) میگویند.
نسبت تعداد پروتونها به نوترونها در هستهی اتمهای مختلف متفاوت است. برای مثال، نسبت تعداد نوترونها به پروتونها در اتم اکسیژن نسبت ۱ به ۱ است، در حالی که در اتم آهن به نسبت ۱۵ به ۱۳ است. طبق یک قاعدهی کلی که از اصل طرد پائولی نتیجه میشود، اگر این نسبت کمتر از ۱/۵ باشد؛ اتم پایدار است و فروپاشیده نمیشود و همین، دلیل اصلی پایدار بودن نوترونها در داخل هستهی اتم است. هر اتمی که نسبت نوترونها به پروتونها بیشتر از ۱/۵ باشد، ناپایدار است و در برخی از اتمها با فروپاشی یکی از نوترونها به پروتون و الکترون، سعی در برقراری این تعادل میشود. برای مثال:
{\displaystyle {\ce {^{137}_{55}Cs->{^{137}_{56}Ba}+{e^{-}}+{\bar {\nu _{e}}}}}}
با اندازهگیریهایی که ارنست رادرفورد انجام داد، او متوجه شد که جرم هستهی اتم تقریباً دوبرابر تعداد پروتونها است. بدین ترتیب او پیش بینی کرد که ذره دیگری باید در هسته باشد تا این کمبود جرم را جبران کند.
در سال ۱۹۳۲ جیمز چادویک آزمایشی ترتیب داد. او بریلیم را با ذرات آلفا بمباران کرد و متوجه شد که ذرّهای با قدرت نفوذ بسیار بالا از هستهی اتم بیرون میزند که در میدان مغناطیسی منحرف نمیشود. او ابتدا فکر کرد که این باید اشعه X یا گاما باشد؛ اما هنگامی که سرعت آن را اندازه گرفت، متوجه شد که سرعت این ذره یک دهم سرعت نور است. به همین دلیل این ذره را که جرم آن حدود جرم پروتون بود، بار الکتریکی نداشت و سرعت آن یک دهم سرعت نور بود، نوترون نامید و آن را به هسته نسبت داد.
داستان کشف نوترون و خصوصیات آن برای تحولات خارق العاده در فیزیک اتمی که در نیمه اول قرن 20 رخ داده است ، محوری است و در نهایت در سال 1945 به بمب اتمی منتهی شد. در مدل رادرفورد در سال 1911 ، اتم متشکل از یک هسته عظیم با بار مثبت است که توسط ابر بسیار بزرگتر از الکترونهای با بار منفی احاطه شده است. در سال 1920 ، رادرفورد اظهار داشت که این هسته از پروتونهای مثبت و ذرات با بار خنثی تشکیل شده است ، اتم تنها به پروتون و الکترون محدود نشده است. [۳] فرض بر این بود که الکترونها در درون هسته ساکن هستند زیرا مشخص شد که تابش بتا از الکترونهای ساطع شده از هسته تشکیل شده است. [۳] رادرفورد این نوترون ها را ذرات غیر قابل شارژ می نامید ، و از ریشه ی لاتین کلمه خنثی (نوتری) و پسوند یونانی -on (پسوند مورد استفاده در نام های ذرات زیر اتمی ، یعنی الکترون و پروتون ) نام نوترون را بر این ذره گزارد. [۴] [۵] با این حال ، منابع مربوط به کلمه نوترون را می توان حتی در مطالعات تا اوایل سال 1899 نیز یافت. [۶]
جیمز چادویک در سال ۱۹۳۲ این ذره را، که رادرفورد در سال ۱۹۲۰ وجود آن را پیشبینی کرده بود، کشف کرد. پروتونها ذراتی با بار الکتریکی مثبت هستند و توسط نیروی کولنی به شدت همدیگر را دفع میکنند. علت اینکه پروتونها همدیگر را دفع نمیکنند، برهمکنش آنها با نوترونها توسط نیروی هستهای قوی است. نوترون در حال آزاد ذرهای ناپایدار است و عمر متوسط آن ۹۱۸ ثانیه است و به پروتون، الکترون و نوترینو واپاشیده میشود. به این واپاشی، واپاشی بتا منفی ({\displaystyle {\ce {\beta^{-}}}}{\displaystyle {\ce {\beta^{-}}}}) میگویند.
نسبت تعداد پروتونها به نوترونها در هستهی اتمهای مختلف متفاوت است. برای مثال، نسبت تعداد نوترونها به پروتونها در اتم اکسیژن نسبت ۱ به ۱ است، در حالی که در اتم آهن به نسبت ۱۵ به ۱۳ است. طبق یک قاعدهی کلی که از اصل طرد پائولی نتیجه میشود، اگر این نسبت کمتر از ۱/۵ باشد؛ اتم پایدار است و فروپاشیده نمیشود و همین، دلیل اصلی پایدار بودن نوترونها در داخل هستهی اتم است. هر اتمی که نسبت نوترونها به پروتونها بیشتر از ۱/۵ باشد، ناپایدار است و در برخی از اتمها با فروپاشی یکی از نوترونها به پروتون و الکترون، سعی در برقراری این تعادل میشود. برای مثال:
{\displaystyle {\ce {^{137}_{55}Cs->{^{137}_{56}Ba}+{e^{-}}+{\bar {\nu _{e}}}}}}
با اندازهگیریهایی که ارنست رادرفورد انجام داد، او متوجه شد که جرم هستهی اتم تقریباً دوبرابر تعداد پروتونها است. بدین ترتیب او پیش بینی کرد که ذره دیگری باید در هسته باشد تا این کمبود جرم را جبران کند.
در سال ۱۹۳۲ جیمز چادویک آزمایشی ترتیب داد. او بریلیم را با ذرات آلفا بمباران کرد و متوجه شد که ذرّهای با قدرت نفوذ بسیار بالا از هستهی اتم بیرون میزند که در میدان مغناطیسی منحرف نمیشود. او ابتدا فکر کرد که این باید اشعه X یا گاما باشد؛ اما هنگامی که سرعت آن را اندازه گرفت، متوجه شد که سرعت این ذره یک دهم سرعت نور است. به همین دلیل این ذره را که جرم آن حدود جرم پروتون بود، بار الکتریکی نداشت و سرعت آن یک دهم سرعت نور بود، نوترون نامید و آن را به هسته نسبت داد.
داستان کشف نوترون و خصوصیات آن برای تحولات خارق العاده در فیزیک اتمی که در نیمه اول قرن 20 رخ داده است ، محوری است و در نهایت در سال 1945 به بمب اتمی منتهی شد. در مدل رادرفورد در سال 1911 ، اتم متشکل از یک هسته عظیم با بار مثبت است که توسط ابر بسیار بزرگتر از الکترونهای با بار منفی احاطه شده است. در سال 1920 ، رادرفورد اظهار داشت که این هسته از پروتونهای مثبت و ذرات با بار خنثی تشکیل شده است ، اتم تنها به پروتون و الکترون محدود نشده است. [۳] فرض بر این بود که الکترونها در درون هسته ساکن هستند زیرا مشخص شد که تابش بتا از الکترونهای ساطع شده از هسته تشکیل شده است. [۳] رادرفورد این نوترون ها را ذرات غیر قابل شارژ می نامید ، و از ریشه ی لاتین کلمه خنثی (نوتری) و پسوند یونانی -on (پسوند مورد استفاده در نام های ذرات زیر اتمی ، یعنی الکترون و پروتون ) نام نوترون را بر این ذره گزارد. [۴] [۵] با این حال ، منابع مربوط به کلمه نوترون را می توان حتی در مطالعات تا اوایل سال 1899 نیز یافت. [۶]